
An Improved Neural Network Based Approach For Identification of self
& Non-Self Processes

AMIT KUMAR, SHISHIR KUMAR
Department of Computer Science and Engineering
Jaypee University of Engineering and Technology

A.B. Road, Raghogarh, Guna
INDIA

amitrathi10@yahoo.co.in http://www.juet.ac.in/Department/faculty.php?id=42483894&dep=cse,
dr.shishir@yahoo.com http://www.juet.ac.in/Department/faculty.php?id=45652778&dep=cse

Abstract:-Security of computer systems is a very crucial issue. Now a days various security approaches
and tools are used to protect computer system by any virus, worms and attacks. These security tools
require a regular signature based updating to protect the computer system by latest virus and worms. If a
system has not updated its security tool, then it may be infected by any virus or worms, then the
operating system generates its processes. These processes are harmful to the computer system. These
processes are categorized as non-self processes. In this paper an Artificial Neural Network is designed to
identify the self and non-self operating system process. Backpropagation Algorithm is used to provide the
training and learning to the Artificial Neural Network. Initially an Artificial Neural Network is created
with random input weights. These weights are updated by using Backpropagation Algorithm for various
training examples. After the weight update Artificial Neural Network tests by various test data examples.
After campaigning with various computer security approaches it has been observed out, that Artificial
Neural Network provides a better security by identifying self and non-self process.

Key words:-Security, Self Process, Non Self Process, Backpropagation, Weight, Activation Function.

1 Introduction
Computer Security[1] is a very critical issue.
Various terms can be used instead of computer
security like information security, Cyber
Security, etc. To provide the highest level of
computer security, operating system developers
required to implement an efficient and secure
operating system[2]. Many OS developers,
design secure operating systems and some
security tools. The objective of these OS a
security tools are to identify the unauthorized
access of the system. Many software and
hardware based security tools are also available
for the computer designed by various
vendors[3]. Lots of operating systems cannot
provide the best computer security level due to
its design limitations. To get the maximum
security level for a computer system, lots of
major change is required in the design of an
operating system. By using the concept of
Artificial Neural Network we proposed a
methodology to provide the maximum security
by identification of self and non-self process[4,5
6].

 The Artificial Neural Network is a major
conceptual concept of machine learning[7,8,9].
The operating system processes can be
categorized into two parts self and non-self. The
processes which are generated by system
software, application software or any trusted
software can be classified as non-self. The
processes which are generated by viruses, worms
can be classified as non-self. In this paper the an
Artificial Neural Network is designed to identify
these non-self processes.
 The concepts of Machine learning are used to
provide better security. Tom M. Mitchell[7]
provided a formal definition of Machine
Learning: "A computer program is said to learn
from experience E with respect to any class of
tasks T and performance measure P, if its
performance of tasks in T, as measured by P,
improves with experience E". Machine learning
deals with the development of such computer
programs which automatically improves their
performance and gain experience. These
concepts can be used in the Artificial Neural
Network approach to provide better security.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 272 Volume 14, 2015

mailto:amitrathi10@yahoo.co.in
mailto:dr.shishir@yahoo.com

There are lots of Machine Learning concepts
like Concept Learning, Decision Tree Learning,
learning through Artificial Neural Network
(ANN), Bayesian Learning, Instance-Based
Learning, Genetic Algorithm, Analytical
Learning[7] etc. In this paper a methodology is
being proposed, in which learning will be
provided through Artificial Neural Network.
 Artificial Neural Network learning[7,
10,11,12] can be implemented on real-valued,
discrete valued, and vector-valued functions
from a given set of examples. ANN is motivated
by natural neuron learning systems of living
things. Backpropagation algorithm[13,14,15] is
mostly used in ANN for learning purpose. ANN
learning has been successfully applied to various
problems like handwritten character recognition,
interpreting visual scenes, face recognition,
learning robot strategies, speech recognition, etc.
In this paper ANN learning approach and
Backpropagation algorithm has been applied for
to identify the self and non-self process of a
computer operating system.

2 Proposed Methodology
Operating system of a computer system
generates processes of the all programs and
software to execute it. If viruses, worms and
attacks are not identified by the security tolls
then OS of the computer system also creates the
processes of these in the system. Proposed
approach based on ANN, works on the processes
and its parameters to identify the process
generated by viruses or attacks. These processes
will be identified as non-self by using the
concepts of ANN.
 A process during the execution uses its various
attributes to complete its task, like:
• ProcessID - this shows the identity number

of the process
• Priority - show the priority to get the CPU

time among the other processes the priority
may be normal, below normal or above
normal.

• Product name - show the name of the
software Version - show the version number
of the software

• Description - show the description of the
process

• Company - show the name of the company
who developed the software, this may be
null.

• Window Title - If the processes have a GUI,
then there will be a Window title for it, , this
may be null.

• File size – it shows the process’s software
file size in bytes

• File Created Date - it shows the date and
time of creation of process’s software

• File Modified Date - it shows the date and
time of modification (if there is any) of the
process’s software. If there is no
modification in the software then the file
modification date is same as file created
date.

• File Name - it shows the path and file name
of the executable file.

• Base Address - it shows the memory address
of the process in main memory.

• Created On - it shows the date and time of
creation of process in the computer system.

• Visible Windows - If the processes have
GUI, then there will be some (number)
visible Windows for it

• Hidden Windows – it shows the number of
hidden windows of the process.

• User Name - it shows the user name (owner)
of the processes.

• Memory Usage - it shows the average
memory usage in KB of the process during
the

• Memory Usage Peak - it shows the peak
memory usage in KB of the process during
the execution.

• Page Faults - it shows the number of page
faults made by the process during the
execution.

• Pagefile Usage - it shows the average page
file usage in KB of the process during the
execution.

• Pagefile Peak Usage - it shows the peak
page file usage in KB of the process during
the execution.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 273 Volume 14, 2015

Figure 1: Process Properties of googletalk.exe

Figure 2: Screenshot of CurrProcess tool

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 274 Volume 14, 2015

• File Attributes- this field shows the attribute
of the file of the process, this may be empty
of has the value A or C, this may be null.

 Figure 1 shows the properties of the Process of
googletalk.exe. Figure 1 shows all the process
parameters as described above. For the initial
implementation of the ANN we identify those
parameters of a process which has not null
values. By using the Curprocess tool[16] initially
ten attributes Process ID, Priority, File Modified
date, Base Address, Number of Visible windows,
Number of Hidden windows, File size, Memory
Peak Usage, Page Faults and Page File Peak
Usage will be used in the proposed approach.
Figure 2 shows the screen shoot of CurrProcess
tool window.

3 Range of the parameters
 Operating system process parameter has some
values like a number, size of the file in bytes or
KB, address in hexadecimal format, character,
etc. It may be possible that some parameters are
null (or zero value) like window title, file
attributes, Number of Visible windows and
Number of Hidden windows. These values of
process parameters have some lower and higher
range as shown in Table 1. By using the
Currprocess tool for various system running
conditions minimum and maximum range of the
process parameter have been identified as shown
in Table 1.

Table 1: Process Parameters and its minimum and maximum range.

3.1 Range for Learning and Preprocessing
Initially for the proposed approach ten process’s
parameters are used for the identification of the
self and non-self processes. These ten parameters
are Process ID, Priority, File Modified Date, Base
Address, Number of Visible windows, Number of
Hidden Windows, File Size, Memory Peak Usage,
Page Fault, and Page File Peak Usage.
The value of Process ID(PID, a real number),
File Size(FS, in KB), Memory Peak Usage(MPU,

in KB), Page Fault(PF, a real number), are Page
File Peak Usage(PFPU, in KB) is in the form of
accountable size i.e. in number form. So, there
values are converted into the Very Low (VL),
Low (L), Medium (M), High (H) and very High
(VH). In the training examples the abbreviations
VL, L, M, H and VH are used instead of actual
values.
 The value of the Priority(PR) may be Below
Normal(BN), Normal(N) and Above

Parameter Range Min - Max

Process ID 000-9999

Priority Below Normal, Normal, Above Normal

File Modified date A date and time range for current date

Base Address 0x00000000 – 0x99900000

Number of Visible windows 0 -9

Number of Hidden Windows 0 -99

File Size 00000 – 9999999 (Bytes)

Memory Usage 000 – 999999 (K)

Memory Peak Usage 000 – 999999 (K)

Page Faults 0000 – 9999999

Page File Usage 000 – 999999 (K)

Page File Peak Usage 000 – 999999 (K)

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 275 Volume 14, 2015

Normal(AN). The value of the File Modified
Date (FMD) is in the form of MM/DD/YYYY.
 The value of Base Address (BA) is the form of
0xHHHHHHHH, where H represents a
hexadecimal digit, i.e. the base address is in
hexadecimal form. Number of Visible Windows
(NVW) is a real number, it may be zero also.
Number of Hidden Windows (NHW) is a real
number, it may be zero also.
 For the easy and simple calculation the range
of some of these ten parameters is divided into
various parts as shown following:
 Process ID (PID) range has been divided into
five parts –
 Very low - 714 and below
 Low – 715 to 1938
 Medium - 1939 to 3163
 High - 3164 to 4388
 Very High - 4389 and above
 File Size (FS) range has been divided into five
parts -
 Very Low - 261419 and below

Low – 261420 to 314688
 Medium - 314689 to 4375625
 High - 4375626 to 8436562

Very High - 8436563 and above
 Memory Peak Usage (MPU) range has been
divided into five parts -
 Very Low - 10490 and below
 Low – 10491 to 31302
 Medium - 31303 to 78172
 High - 78173 to 109391
 Very High - 109392 and above
 Page Faults (PF) range has been divided into
five parts -
 Very Low - 2274 and below
 Low – 2275 to 5358
 Medium - 5359 to 25001
 High - 25002 to 43750
 Very High - 43751 and above
 Page File Peak Usage (PFPU) range has been
divided into three parts -
 Very Low - 2367 and below
 Low – 2368 to 5008
 Medium - 5009 to 31269
 High - 31270 to 57530
 Very High - 57531 and above
 The range of these process parameters may be
changed due to the system architecture &
organization and operating system running on the
computer system.

 The value of the Priority(PR), File Modified
Date (FMD), Base Address (BA), Number of
Visible Windows (NVW), Number of Hidden
Windows (NHW) are used as shown below:-

• The value of the Priority(PR) are (used on

the scale of 1000) :
Below Normal(BN) - 250
Normal(N) - 500
Above Normal(AN) – 750

• The value of the File Modified Date (FMD)
is converted into an age (in days) after
subtracting from current date. For example
processes P4 in Table 2 has the FMD =
1/1/2007, after subtracting from the current
date (8/25/2014) we get the age factor of the
file = 2754 days. FMD filed is used as the
age of the file in number of days.

• The value of Base Address (BA) is the form
of 0xHHHHHHHH, where H represents a
hexadecimal digit. The value of Base
Address (BA) is used as follows:
 0x00000000 to 0x004FFFFF = 200
 0x00500000 to 0x01FFFFFF = 400

0x04000000 to 0x3FFFFFFF = 600
0x40000000 and Above = 800

• Number of Visible Windows (NVW) is
scaled as follows (used on the scale of
1000):

0 – 800
1 to 3 - 600
4 to 8 – 400
8 and above – 200

• Number of Hidden Windows (NHW) is scaled
as follows (used on the scale of 1000):

0 to 10– 200
11 to 25 - 400
26 to 50 – 600
51 and above – 800

4 Training Examples
To apply learning methods of any machine
learning concept, a few sets of training examples
are required to train/learn. To learn an ANN
training example, plays an important role. These
training examples set have both positive (self)

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 276 Volume 14, 2015

and negative (non-self) examples as shown in
Table 2. In the training examples set of Table 2
there are 20 training examples in which13 are
positive (self) and 7 are negative (non-self).
Through these examples, training is provided to
ANN. The values of 5 processes parameters are
used as per the above section into Very Low
(VL), Low (L), Medium (M), High (H) and very
High (VH) to make the easy calculation and
understanding. The abbreviations VL, L, M, H
and VH will be used instead of actual values as
shown in Table 3. This training examples set is
constructed, after various running conditions on
different workloads of a computer system. The
system was virus infected during these

observations. Different 20 processes are
identified as training set as shown in Table 2. In
these 20 training examples thirteen examples are
positive examples (generated by system and some
application processes) and seven examples are
negative examples (generated by viruses).

5 Neural Network Learning
Artificial Neural Network Learning gives a
truthful result to approximating real-valued,
discrete-valued, and vector-valued target
function. An elementary unit to construct ANN is
perceptron [17,18].

Table 2: Training Example Set (in parameter’s real value)

 PID FS MPU PF PFPU PR FMD BA
NVW NHW Self

P1 136 866584 77236 132687 69836 BN 7/23/2013 0x00400000 0 0 Yes

P2 4060 487424 7956 2340 9088 N 11/24/2008 0x00400000 0 0 Yes

P3 2068 15360 5848 1566 3240 N 4/14/2008 0x00400000 0 5 Yes

P4 2132 3739678 34664 22390 30648 N 1/1/2007 0x00400000 1 10 No

P5 2368 3462552 20020 6304 16756 N 2/1/2012 0x00400000 1 7 Yes

P6 2500 108544 81872 36169 89572 N 12/13/2012 0x00400000 1 15 No

P7 1436 1159168 16636 4811 13400 N 6/10/2012 0x00400000 1 6 Yes

P8 5780 108544 83268 56088 104952 N 10/13/2011 0x00400000 1 12 Yes

P9 3724 263600 6296 1612 3396 N 5/25/2010 0x00400000 0 3 No

P10 3848 221184 12844 3319 9648 N 7/31/2010 0x00400000 0 13 Yes

P11 744 2647432 58528 34487 48700 N 12/6/2008 0x00400000 0 8 Yes

P12 2888 79120 149544 110529 120180 N 11/14/2008 0x00400000 1 12 Yes

P13 2716 15752 8344 8214 6308 N 12/6/2008 0x00400000 0 0 No

P14 3484 16851968 34428 12895 39940 N 9/9/2008 0x00400000 0 55 Yes

P15 3932 1695232 18436 5764 14860 N 4/14/2008 0x01000000 1 17 Yes

P16 1416 1274832 26316 11497 16228 N 11/3/2012 0x00400000 1 11 No

P17 2672 36352 18276 44086 13552 N 5/22/2008 0x00400000 2 12 Yes

P18 664 14336 5256 1342 3156 N 4/14/2008 0x01000000 0 0 Yes

P19 3344 1033728 39104 154032 49800 AN 4/14/2008 0x01000000 4 56 No

P20 1632 911824 21240 5535 12640 N 11/3/2012 0x00400000 0 9 No

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 277 Volume 14, 2015

 A perceptron takes the input as a vector of
real-valued, calculate a linear combination of
these inputs with their corresponding weights,
then produces a outputs 1 if the result is larger
than some threshold and -1 if the result is larger
than some threshold. Figure 6 shows the
Artificial Neural Network to identify the self and
non-self operating system process. In this ANN
there are ten inputs, five inputs as according to
five processes parameters whose parameter
values are abbreviated as VL, L, M, H, VH these
parameters are Process ID(shown by PID in
ANN), File Size(shown by FS in ANN), Memory
Peak Usage(shown by MPU in ANN), Page
Fault(shown by PF in ANN), are Page File Peak
Usage(shown by PFPU in ANN).

 Learning an ANN perceptron involves
choosing and updating the values of the weights.
To learn the perceptron begin with some random
weights or with a fix weight value to each weight
i.e. 0.5 to each weight and then iteratively apply
the perceptron to each example of training data,
modifying the perceptron weights as according to
the learning algorithm. This process is repeated
as many times as needed on the training
examples until the perceptron correctly classifies
all training examples. Weights are modified at
each iteration according to the perceptron
training rule by using the learning algorithm.
Backpropagation algorithm [7,13,14,15] is a well
known learning algorithm for preceptron learning
as mentioned below-

 PID FS MPU PF PFPU PR FMD BA NVW NHW Self

P1 VL VH M VH VH 250 392 200 800 250 Yes

P2 H H VL L M 500 2071 200 800 500 Yes

P3 M VL VL VL L 500 2291 200 800 500 Yes

P4 M M M M M 500 2754 200 600 500 No

P5 M M L M M 500 924 200 600 500 Yes

P6 M VL L M VH 500 612 200 600 500 No

P7 L M L L M 500 795 200 600 500 Yes

P8 VH VL H VH VH 500 1032 200 600 500 Yes

P9 H L VL VL L 500 1530 200 800 500 No

P10 H VL L L M 500 1465 200 800 500 Yes

P11 L M M H H 500 2059 200 800 500 Yes

P12 M VL VH VH VH 500 2081 200 600 500 Yes

P13 M VL VL L M 500 2059 200 800 500 No

P14 H VH M M H 500 2146 200 800 500 Yes

P15 H M L M M 500 2291 400 600 500 Yes

P16 L M M M M 500 652 200 600 500 No

P17 M VL L VH M 500 2253 200 600 500 Yes

P18 VL VL VL VL L 500 2291 400 800 500 Yes

P19 H M VL L H 750 2291 400 400 750 No

P20 L M L L M 500 652 200 800 500 No

Table 3: Training Example Set (in parameter’s encoding form)

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 278 Volume 14, 2015

φ(*)

PID

FS

MPU

PF

PFPU

PR

FMD

BA

NVW

NHW

1 Bias

Hidden 1

Hidden 2

Summing
Junction

Activation
function

θk Threshold

Output

Figure 3: Neural Network for identification of Self and Non-self processes.

5.1 Backpropagation algorithm
Following is the Backpropagation algorithm used in
Artifical Neural Network learning -
BACKPROPAGATION(training_example, η,
nin, nout, nhidden)
Every training example is a pair of the form
‹ x, t ›, where x is the vector of network input
values, and t is the vector of target network
output values.
η is the learning rate (e.g. 0.5), nin is the number
of network inputs, nhidden the number of units in
the hidden layer, and nout is the number of output
values.
The input fiom unit i into unit j is denoted xji, and
the weight from unit i to unit j is denoted wji.

• Create a feed-forward network with nin
inputs, nhidden hidden units and niout
outputs units.

• Initialize all network weights to small
random numbers (e.g. between – 0.05
and 0.05).

• Until the termination state is met, Do

o For each ‹ x, t › in training-examples,
Do
Propagate the input forward through
the network:

1. Input the instance x to the
network and compute the
output ou of every unit u in
the network.

Propagate the error backword through
the network:

2. For each network output unit k,
calculate its error term δk

 δk ok (1- ok) (tk - ok)
3. For each hidden unit h,

calculate its error term δh

 δh oh (1- oh) Σ wkh δk
 k Є outputs
4. Update each network weight wji
 wji wji + ∆ wji
 where
 ∆ wji = η δj xji

 The job of the Backpropagation algorithm is to
moderate the degrees to which weights are
altered at each step. Training examples provide
target values tk only for network outputs, no
target values are directly available to indicate the
error of hidden units' values. Instead, the error
term for hidden unit h is calculated by summing
the error terms δk for each output unit influenced
by h, weighting each of the δk 's by wkh, the
weight from hidden unit h to output unit k. This
weight characterizes the degree to which hidden

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 279 Volume 14, 2015

unit h is "responsible for" the error in output unit
k.

 The Backpropagation algorithm update
weights incrementally to obtain the true gradient
of error one would sum the δj xji values over all
training examples before altering weight values.
The weight-update loop in the Backpropagation
algorithm may be iterated thousands of times in a
typical application.
 A variety of termination conditions[7] can be
used to halt the procedure. One may choose to
halt after a fixed number of iterations through the
loop, or once the error on the training examples
falls below some threshold, or once the error on a
separate validation set of examples meets some
criterion. The choice of termination criterion is
an important one, because too few iterations can
fail to reduce error sufficiently, and too many can
lead to over-fitting the training data.

5.2 Calculation performed in the ANN
Figure 3 shows the architecture of the ANN used
for identification of non-self process. This ANN
architecture has an input layer with 10 nodes as
according to the 10 process parameters. This
ANN architecture has one hidden layer with two

nodes, one summing junction to sum the output
of hidden layers nodes. Then activation function
with threshold function produces the calculated
output. Various activation function and
threshold function can be used to get better
results. In hidden layer nodes following
calculation is performed -
 Σ xiwji
 i, j =0 to n

 Where xi is represents the i’th input node and
wji is the weight of the link of j hidden layer to i
input node. A bias node is added to perform x0
and w01 and w20 terms. Same calculation is
performed in the summing junction node and
scale down on the scale of 1. With the help of
activation function sigmodial and threshold value
(0.5) this ANN architecture produces the output
0 or 1. If the out put is below 0 then the process
is self and if the output is 1 then the process is
non-self.
 To perform the simple and easy calculation in
the hidden layer of ANN, the values of process’s
parameters have been taken as the mean of the
range during the execution of Backpropagation
algorithm has been as shown in Table 4.

 Process ID File Size Memory Peak
Usage Page Faults Page File Peak

Usage

 Range

Value
used

in
ANN

Range
Value

used in
ANN

Range
Value

used in
ANN

Range

Value
used

in
ANN

Range

Value
used

in
ANN

Very
Low

714
and

below
357

261419
and

below
130710

10490
and

below
5245

2274
and

below
1137

2367
and

below
1184

Low 715 to
1938 1327

261420
to

314688
288054

10491
to

31302
20897

2275
to

5358
3817 2368 to

5008 3688

Medium
1939

to
3163

2554
314689

to
4375625

2345157
31303

to
78172

54737
5359

to
25001

15180 5009 to
31269 18139

High
3164

to
4388

3776
4375626

to
8436562

6406139
78173

to
109391

93782
25002

to
43750

34376
31270

to
57530

44400

Very
High

4389
and

above
7194

8436563
and

above
9218281

109392
and

above
554696

43751
and

above
71875

57531
and

above
78765

Table 4: Process’s Parameter values during the execution of Backpropagation algorithm (ANN)

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 280 Volume 14, 2015

 From the training example in Table 3, the
values of process’s parameters are used as
according to the above classification, e.g. if the
value of Page Fault is High (H) then for neural
network calculation is will be used 34376. The
Backpropagation algorithm has been applied to
the training data of Table 3.
 The values of process parameters are scaled
down according to the desired output. After
several of iteration of Backpropagation every
weights are set to a proper required value. The
weights are updated during each iteration, when
there will be no updates in the weights, then

further iteration of the algorithm is not required.
When there will be no update in weights, then
the ANN will be fully learned.
 After updating the weights of the (training)
ANN, this trained ANN is tested with a test data
as shown in Table 4. After providing training by
training data of Table 3 (after 50 iterations) and
then tested by the test data of Table 5, it has been
observed that the ANN classify P24, P26, and
P29 incorrectly. When the number of iteration
increases near about 250 then ANN classify all
test data correctly.

Table 5: Test Data Set

6 Experimental Results and
Comparisons
As the number of the iteration of the
Backpropagation algorithm increases and
weights are updated errors in observing output
and desire output decreases as shown in the
Figure 4 and Figure 5. Weight update of all input
to hidden layer and hidden to output layer are
updates slightly in the direction of the positive or
negative side as the number of iteration increases
as shown in Figure 6. So, to decide when to stop
the iteration of Backpropagation algorithm, i.e.
how many iteration is sufficient to provide a

decision on self and non-self processes. It has
been observed from the graph of Figure 4, Figure
5 and Figure 6, that 400 to 500 iterations are
sufficient in this case.
 It has been observed from the Figure 7, as the
numbers of input nodes (parameters) in the ANN
increased the security also increased. So, we
have to decide that how many input nodes are
sufficient. It is cleared from the graph of Figure
7 that when the nodes increases after fifteen then
the security remain nearly about constant. It has
been observed from the Figure 8, as the numbers
of nodes (parameters) in the ANN increases,

 PID FS MPU PF PFPU PR FMD BA NVW NHW Self

P21 H M M M M 500 2818.0 600 600 0.2 Yes

P22 M M L M M 500 691.0 200 800 0.2 No

P23 M VH M M M 500 2818.0 600 400 0.2 Yes

P24 M M M M M 500 1967.0 200 600 0.6 Yes

P25 M VH M M H 500 2818.0 600 600 0.2 Yes

P26 H VH L M M 500 2818.0 600 600 0.2 No

P27 H M L L M 500 1689.0 400 600 0.2 Yes

P28 H M VL L M 500 2291.0 400 600 0.2 No

P29 VH VH M M H 500 2818.0 600 600 0.2 Yes

P30 M M VL VL L 500 2291.0 800 600 0.2 Yes

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 281 Volume 14, 2015

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400 500

Training
Set Error
Test Set
error

Number of weight update

Error
(% Deference in
Observed and
Desire output on
the scale of 1)

Error vs Weight Update

Figure 4: Plots of error E as a function of the number of weight updates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

Output
Error

Number of Training Iteration

Error
(% Deference in
Observed and
Desire output on
the scale of 1)

Output Error

Figure 5: Plots of output error as a the number of iteration increases

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 282 Volume 14, 2015

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 100 200 300 400 500

W11
W12
W21
W22
W31
W32
W41
W42
W51
W52
W61
W62
W71
W72
W81
W82
W91
W92
W101
W102
WH11
WH21

Number of iterations

Weight
update

Weights from input to hidden layer

Figure 6: Plots of weight update

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Security

Security

Number of input Nodes/Parameters

Value on
Scale 1

Figure 7: Graph between the number of input nodes and security level

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 283 Volume 14, 2015

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25

System Performance Lag

System
Performance
Lag

Number of Nodes input nodes/ Parameters

Value on
Scale 1

Figure 8: Graph between number of input nodes and decrease in system performance

Parameters

AntiVirus

Scan

Time
Accuracy

Detection

Rate

Performance

Lag

Signature

based

Detection

Regular

Updating

Required

AVG Anti-irus High High Normal Yes Yes Yes

Norton Antivirus High High High Yes Yes Yes

Avast Antivirus High Medium Normal Yes Yes Yes

Microsoft

Security

Essentials

Average High High Yes Yes Yes

Proposed

Approach
Low Very High Very High Yes No No

Table 5: Comparison of Proposed Approach with Some Antivirus tools

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 284 Volume 14, 2015

there is a performance degradation in the
computer system as the processes is checked by
the ANN. It is cleared from the graph of Figure 8
that when the nodes increases after 10 then the
system performance decreases very rapidly. So,
to construct an ANN to find out non-self process
all of the above result plays a very important
role.
 The proposed approach for security is better
than the existing security approach as shown in
table 5. The proposed approach takes very less
time to find out the non-self processes of viruses
as other approaches, scan all the files and data
according to the signature (pattern). Accuracy
and detection rate of the non-self processes are
very high in comparison to existing anti-virus
tools, proposed approach check only the
processes so, its accuracy and detection rate is
high.
 As the proposed approach scans all processes
so the system performance will become slow.
The proposed approach is free from signature
updating, as required in existing approaches. As
the proposed approach works on parameter’s
value not on any signature. No regular update is
required in the proposed approach as it is
required in anti-virus tools, we can reset the
weights and then train with the new training data
and test with new test data for updating of the
proposed approach.

7 Conclusion and Future work
Various approaches and anti-virus tools are used
to provide computer security, but a question
arises that these approaches are sufficient or not
to provide best security. Artificial Neural
Network and other machine learning approaches
can play an important role to provide better
security to the computer system.
 The Artificial Neural Network approach used
in this paper to provide better result over the
current security approaches. By adjusting the
value of learning rate η used in the
Backpropagation algorithm once can get the
better learn system for identification of non-self
processes. By using many bigger training and
test data sets, better weight update can be done
and it will provide a better result.

References
[1] Rossouw von Solms and Johan Van Niekerk,

2013, “From information security to cyber
security”, Elsevier’s Computer & Security,
Vol. 38, pp 97–102.

 [2] Cui-Qing Yang, 2003, “Operating System
Security and Secure Operating Systems”,
GSEC-Version1.4, Global Information
Assurance Certification Paper.
http://www.giac.org/paper/gsec/2776/operati
ng-system-security-secure-operating-
systems/104723

 [3] http://www.cyberwarzone.com/massive-
cyber-security-tools-list-2013

[4] J. K. Percus, O. E. Percus and A. S. Perelson,
1992, “Probability of Self-Nonself
discrimination” Proceedings of the NATO
Advanced Research Workshop on
Theoretical Immunology, Vol. 66, pp 63-70.

[5] S. Forrest, S. A. Hofmeyr, A. B. Somayaji
and T. A. Longstaff, 1996, “A sense of self
for UNIX processes”, Proceedings of IEEE
Symposium on Computer Security and
Privacy, pp 120-128
http://www.cs.unm.edu/~immsec/publication
s/ieee-sp-96-unix.pdf

[6] Amit Kumar and Shishir Kumar, 2014,
“Artificial Neural Network Based
Approach for Identification of Operating
System Processes” Journal of Applied
Information Science, Vol. 2 Issue 1, pp 1-
11.

[7] Tom M. Mitchell, 1997, “Machine Learning”,
McGraw-Hill International Editions,
Computer Science Series, Ch 2 pp 20-50, Ch
3 pp 52-78, Ch 4 pp 81-126.

[8] Haoyong Lv, Hengyao Tang, 2011, “Machine
Learning Methods And Their Application
Research”, IEEE International Symposium
on Intelligence Information Processing and
Trusted Computing, pp 108 – 110.

 [9] Wang Hua, MA Cuiqin, Zhou Lijuan, 2009,
“A Brief Review of Machine Learning and its
Application”, IEEE Information Engineering
and Computer Science, ICIECS, pp 1-4.

[10] Derrick H. Nguyen and Bernard Widrow,
1990, “Neural Networks for Self-Learning
Control System”, IEEE Control System
Magazine, pp 18-23.

[11] Guoqiang Peter Zhang, 2000, “Neural
Networks for Classification: A Survey”,

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 285 Volume 14, 2015

IEEE Transaction on System, Man and
Cybernetics-Part C: Applications and
Reviews Vol. 30, No. 4. pp 451-462.

[12] Bart Baesens, Pantelis Bouboulis, and
others, 2012, “Neural Networks and
Learning Systems Come Together.”, IEEE
Transactions on Neural Networks, Vol. 23
No. 1, pp 1-6.

[13] Rama Kishore and Taranjit Kaur 2012,
“Backpropagation Algorithm: An Artificial
Neural Network Approach for Pattern
Recognition”, International Journal of
Scientific & Engineering Research, Vol. 3,
Issue 6, pp 1-4.

[14] S. Suresh, S.N. Omkar, and V. Mani 2005,
“Parallel Implementation of Back-
Propagation Algorithm in Networks of
Workstations”, IEEE transactions on parallel
and distributed systems, Vol. 16, no. 1, pp
24 -34.

[15] S.Jeyaseeli Subavathi and T. Kathirvalava
Kumar, 2011, “Adaptive modified
backpropagation algorithm based on
differential errors” International Journal of
Computer Science, Engineering and
Applications (IJCSEA) Vol.1, No.5, pp 21-
34.

[16] CurrProcess v1.13 - Freeware Process
Viewer, Copyright (c) 2003 - 2008 Nir Sofer,
http://www.nirsoft.net/utils/cprocess.html

[17] James W. Watterson, 1990, “An Optimum
Multilayer Perceptron Neural Receiver
for Signal Detection”, Neural Networks,
IEEE Transactions on Vol. 1, Issue 4, pp
280-300.

[18] Sankar K. Pal, Sushmita Mitra, 1992,
 “Multilayer Perceptron, Fuzzy Sets and
 Classification”, IEEE Transaction on Neural
 Networks, Vol. 3, No. 5, pp 683-697.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 286 Volume 14, 2015

http://www.nirsoft.net/utils/cprocess.html

